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Abslract. We have developed a new diagnostic vxll for the analysis of the order-tochaos 
Lransition: the parlial Lyapunov exponents, defined through the dynamics in the tangent 
space. l l e y  allow the dynamics of single wliables 10 be analysed, and are suitable for 
systems with several degrees of freedom. We have numerically simulated the dynamics 
of a model at five nonlinearly mupled ascillalors; the partial Lyapunov exponencs have 
been used to compute a characteristic coherence time for each degree of freedom. These 
quantities give information which is mmplementary to the usual natistical mrrelalion 
times, and show that the high-frequency degrees of heedam, while losing their correlation 
during the order-to-chaos transition, may keep their coherence over long limes 

1. Introduction 

In systems with highly chaotic dynamics it is not expected to find qualitatively different 
behaviours among the different degrees of freedom: energy equipartition holds and 
all dynamical variables rapidly lose memory of their initial conditions. However, if 
the phase space also entails a region of highly ordered dynamics, there is usually a 
transition region where the system shows a mixed behaviour. In the transition region 
a partial chaoticity may induce differences in the dynamical evolution of the single 
degrees of freedom (DOFS). A detailed understanding of this particular regime can 
be important in real physical systems with a complex structure, in which the degree 
of chaos of a part of the system could significantly differ from that of another part. 

The usual indicators of order and chaos either give information on the dynamics 
of the system as a whole (e.g. Lyapunov exponents [l], fractal dimensions 121, spectral 
entropy [3]) or are impractical for systems with many DOFS (Poinark's maps, auto- 
and crass-correlation functions). Because of the need for tools able to predict the 
finite time behaviour of the single D o n  in a large system, we have elaborated a 
new diagnostic instrument, easy to compute and able to give insight into the short 
and medium time behaviour of each DOF in a complex structure. In this paper we 
describe the new tools, and implement them on a simple dynamical model which, 
however, retains an important feature of many complex systems: the presence of 
different characteristic frequencies, with mlues spanning a large range. 

2. The model 

Our model consists of a system of five nonlinearly coupled linear oscillators. ?he 
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Hamiltonian of the model is given by 

The value of a can be modified at will rescaling the lengths; we have taken a = 1. 
We have considered three cases, distinguished by the values of the frequencies wi; 
they are shown in table 1. The choice of the values has been suggested by the 
purpose of having both resonant and non-resonant frequencies. In the no gap (NG) 
case, studied for comparison, the frequencies span a narrow range. In the other two 
cases, we studied the influence of a frequency gap on the dynamics of the various 
DOFS by multiplying wq and w5 by 10 for small gap (SG) and by 30 for large gap (LG). 

Tabk 1. Different Venions of lhe model. 

Name Symbol W I  w1 WJ w, wg 

No gap NO I % Z e 3  

Largegap I f 2  m e 9 0  
Sma!! gap x- ! ;  - 2  1oe3 

We have numerically integrated both the equations of motion and the variation 
equations of motion with the central difference algorithm [4]. The initial conditions 
for the time evolution were generic; ie .  the energy was equally distributed on the five 
~ F S .  The time step used in the integration was 1/50 of the shortest characteristic 
period (27r/w5) in each case. The second-order equations of motion are 

1.5 
q .  = -wz . - 2a 

I 4 1  s:s, 
i ( # i )  

i = 1 ,  ..., 5. 

The variation equations are  usually written as first-order equations in the tangent 
space; if ii = F i ( ( z j ) )  are the Hamiltonian equations of motion, where ii is one 
of the qi or one of the p i ,  then the equations of motion of the tangent space vector 
g corresponding to the variation of z have the following expression [I]: 

where the expression multiplying yI. is computed along the trajectory z ( t ) .  Here we 
write them in an equivalent form, more suitable for the numerical integration with 



Parrial Lyapunov exponents 

the antral  difference algorithm: 
I 1 
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where (6,. . . , &, q l , .  . . , q s )  z y. with Fi and qi corresponding to the variations 
of qi and p i  respectively. The maximum Lyapunov exponent B given by 

where y(0) is an initial vector taken randomly in the tangent space [l]. 

which we call partial Lyapunov exponents (PLEs). Our definition is 
In order to have indicators referring to single DOFS we compute new quantities, 

It is necessary that at least one of the A; is equal to A,; but, a priori, some of 
them could be smaller. However, since a generic initial vector in the tangent space 
will expand in modulus like eAM* when t - 00, with probabPity 1, one argues that 
X i ,  for all i, should also be equal to A, with probability 1. Nevertheless, it is 
not to 'oe expected that aii Xi(ij  are q u a i  at finite times, and their differences 
are a relevant point of our investigation. We found that in the transition region 
between highly ordered and highly chaotic motions, for times three or four orders of 
magnitude higher than the characteristic periods of the oscillators, there are significant 
differences in the values of the Ai(t); we have used these differences to define a 
characteristic coherence time T~ for each DOF. Let 6 , ( t )  = ( A ( 1 )  - A i ( t ) ) / A M ;  then 
I ; 0 "C.II,C" a.3 - :" ,4-&..,.,4 ^^ 

with T such that both A ( t )  and A , ( t )  have reached their asymptotic value A,. 
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3. Results 

3.1. Maximum Lyapunov exponents 

We have studied our model at different values of e, the energy per WF, or energy 
density. We have first computed the maximum Lyapunov exponents A, to find out 
whether a transition in the dynamics takes place and the energy range in which this 
happens. in figure i we show A M  at different energy densities. From the change in 
the slope of lg(A,) (sharper in the cases with gap) it is evident that such a transition 
indeed takes place, and is located between c = 0.9 and c = 1.0. In fact, it has been 
shown [5] that such a change takes place at an energy value which can be. interpreted 
as separating, in the phase space, dynamical regimes where diffusion is mainly chaotic 
(high energy) from dynamical regimes where diffusion is mainly of the Arnold type 
(low energy). This energy value has been called the strong stochasticity threshold 
[SI. Below this threshold the behaviour of the different versions is different, but the 
slopes are strongly positive; in particular, for the SG case, A, changes by four orders 
of magnitude, passing from e = 0.7 to c = 1.0. Above the threshold the slopes 
of the graphs become small and the three cases have similar A,. At c = 0.7 we 
have compared the A, of the different versions, as reported in table 2. One can see 
that the extension of the gap in the frequency spectrum Ls not correlated in a simple 
manner with the global chaos of the system, as measured by the value of A,. 

10-1 L ! o : NG 

10-3 x : SG 

1 I'l o : L G  1 
10-4 1 

0.6 0.70.80.9 1 2 

E 

Figure 1. Maximum Lyapunav exponent againn energy density for the NO, SG and LG 

cases. For t = 0.6, AM is equal U) zero in both lhe SG and LG cases. 

3.2. Correlation functions 

We have collected in figures 2 and 3 the autocorrelation functions (ACFS) of the 
harmonic energies of the different DOFS for the SG case, at total energy densities of 
0.7, 0.8, 0.9, and 1.0. In figures 2 and 3 only maxima and minima over groups of 100 
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lhbk 1 AM for the differen1 versions of the model; e = 0.7 .  

Version 9~ NO uj 

AM 8.0 x 2.6 x lo-' 3.8  x 

Figure I AutomrrelaIion funclions for the harmonic energy of the five degrees of 
freedom, in the 9~ ax, at WO energy densities: (0) e = 0.7; (b) L = 0.8. The integer 
in each graph indicales the cotresponding degree of fxedom. 

computed points were plotted, in order to have clear graphs Over large times: in the 
case of an ACF rapidly oscillating around zero this appears as a symmetrical graph. 

The ACFS have different decaying patterns: a clear distinction between the high- 
and low-frequency DOFS appears when the energy is increased. While the typical 
correlation times of all DOFS should decrease when the energy is raised, the rate of 
this decrease should be higher for the high-frequency DOFS than for the low-frequency 
ones. In fact, in the low-energy regime dominated by the presence of KAM tori, the 

frequency DOFs [6]. For increasing energy a cross-over among WFs should take place 
when the system reaches the phase space region where the measure of the KAM tori 
tends to zero and the space is filled with chaotic orbits: here the correlation time 
of each DOF is related to its characteristic period so that the high-frequency DOFS 

~"~..~..~~" hinh-frpnnmnru -..-, n n c c  ""." "._ IIP eunerterl ~ , . ~  --.-- to erhihit ".. lnnnm .I..D-. mrrelatinn times than !he !OK- 
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should have shorter correlation times than the low-frequency ones. 
Figures 2 and 3 show very clearly the expected cross-over in the energy density 

range 0.849. However, while the high-frequency A C E  (4 and 5)  show, as expected, 
a monotonic decrease in the decay time, the low-frequency on= (1, 2 and 3) exhihit 
a peculiar rise in the decay time in the energy density window from e = 0.8 td 
e = 0.9; however, for energies higher than 1.0, the decay times of these functions 
also shorten. The ACFS have a complicated and diversified behaviour around the 
transition, reflecting the complex structure of the phase space. The behaviour of the 
ACFS for the LG case is similar to that shown here in the SG case, while in the NO 
case the ACFS do not show a clear distinction among DOFS. 

1.0 

0.5 

i 0.0 

~ -0.5 

-1.0 
1.0 

0.5 

0.0 

-0.5 

-1.0 

t/104 
Figure 3. Same as in figure 2, for WO funher energy densities (a) f = 0.9; ( b )  f = 1.0. 

3.3. Partial Lyapunov erponenrs 

We have computed the PLES for the five DOFS at various energies, encompassing the 
transition region individuated by A,. In figures 4 to 6 we show the graphs for the 
quantities 6 ; ( t ) ,  each one with five curves corresponding to the five DOFs, for three 
energies. It is clear that in the NG case the various curves behave in a similar way, 
although the fourth and fifth DOF show a higher degree of order at the beginning. 
On the other hand, in the cases with a gap the curves behave in very different ways in 
each graph; a group, corresponding to the DOFS with low characteristic frequencies, 



Partial Lyapunov exponents 1921 

ascillate around zero; the other group, corresponding to the high frequencies, decay 
to zero over large times. In figures 4 and 5 for the SG and LG cases there are peaks, 
in the curves related to the high-frequency DOFs, which are strictly correlated. Each 
peak appearing in a curve indicates that the corresponding DOF is just undergoing 
an intermittent phase of more coherent dynamics, which gives lower values of the 
corresponding Ai(t).  Figure 6 shows that the peaks tend to disappear when the 
energy is raised. 

'hble 3. Coherence l i m e  of the degrees of freedom with higher frequency. 

c 0.7 0.8 0.9 1.0 LO 

NG 
7, 435 189 21 28 14 
7 5  557 336 57 34 16 

SG 
rr 68300 1630 182 M 35 
76 73100 1740 192 69 37 

ffi 
rr U180 2020 116 I00 51 
r5 ii80 L I ~ U  iii i04 54 ^. .^ 

In table 3 we report the values of the coherence times ri of the high-frequency 
DOFS at various energies. In each case T > ri in (7). The values computed for 
the low-frequency DOFS are less significant (and are therefore not given in table 3) 
because the variance of the integrand in (7) is very large. Nevertheless, we report that 
in the SO and LG cases they are much smaller than the ri of the high-frequency DOFs; 
they thus show a clear distinction between the dynamical behaviour of high-frequency 
and low-frequency DOFS. On the other hand, in the NG case, where we expect a more 
uniform behaviour from the various DOFs, we found that all the T~ have the same 
order of magnitude. 

The values of the ri given in table 3 show that while the general trend is of 
decreasing si for increasing energy, the detaiied behaviour of the DOFS manifests a 
more complicated pattern. Thus, for example, the ri for the SO case are sometimes 
larger and sometimes smaller than the corresponding ri of the uj case at the same 
energy. The ri in these two cases turn out to be roughly inversely proportional to 
A,, namely, r, and r5 are given by ri = ci/A,, where ci Seems to be independent 
of the energy and to depend only-but in a non-trivial way-on the i th  frequency. 

4. Discussion and comments 

As already mentioned, in the SG and LG cases the ACFS show a characteristic be- 
haviour: at low energy the functions corresponding to the high-frequency DOFs extend 
over times which are much larger than those of the functions corresponding to the 
low-frequency DOFS; when the energy is raised, a cross-over in the correlation times 
occurs. It is interesting to notice that a cross-over of characteristic relaxation times 
similar to that described here has been observed in the Fermi-Pasta-Ulam p model 
[7]. However, it must also be noticed that it is often difficult to obtain a quantitative 
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Figure 4 Functions S ; ( t )  far the NG, ZG and Ls cases, for L = 0.7.  The integers on 
the mwes refer lo the single degrees of freedom. Note that in this and in the next WO 
figures same scales are different. 

U 
0 1 2 3  

t/104 

Figure 5. Same as in figure 4, for L = 0.8 .  

estimate of characteristic correlation times from the ACFS. It is evident, looking at 
figures 2 and 3, that the shape of the ACFS in most cases does not allow a character- 
istic decay time to be identified. Indeed, either the ACFS are correlated over times 
which are even greater than the whole simulation time (all DOFS at E = 0.7), or the 
structure is quite irregular (see, e.g., the fifth DOF at 6 = 0.9). 

A comparison among the ACFS in the cases with gap gives a picture which is 
somehow in contradiction with the picture derived from the PLES. Thus, while the P I E S  
show that the high-frequency DOFS on nearby trajectories diverge more slowly than the 
low-frequency DOFS, the corresponding ACFS at energies equal to and higher than 0.9 
give a different indication, i.e. that the correlation is shorter for the high frequencies. 
Therefore, for energies above the cross-over region, the high-frequency DOFS have 
shorter correlation times but longer coherence times than the low-frequency WFs. 
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I 

-0.02 O.OO 0 ~ 0.5 1 1.5 
0 0.5 1 1.5 0 0.5 1 1.5 2 

t/104 

F i y r e  6. Same as in figure 4, for e = 1 . 0 .  

?his complex situation may be understood in the following way. It is well known 
that the measure of the KAM tori on the hypersurface of constant energy decreases 
when the energy is raised. In the region where the stochastic sea coexists with 
residual KAM tori, the latter act as constraints for the trajectories of the system: 
they cannot bound undefinitely the trajectories (if the number of W F S  i5 greater 
than two), but they can force the system for a certain time into 'channels' mnning 
through them. In this situation, for generic initial conditions, the system will move 
in the stochastic sea; this will give short correlation times as shown by the ACFS 
at higher energies. However, due to the constraints exerted by the residual KAM 
tori, a trajectory starting from a slightly displaced initial condition-although equally 
stochasti-uld be confined for a certain time near the first one. This behaviour 
is reflected in the existence of long coherence times for certain DOFs. Therefore, we 

DOF to the presence of ordered portions (residual KAM tori or fragments of KAM 
tori) in the phase space; they thus give relevant information necessary to distinguish 
the short and medium time behaviour of the different DOS of the system in the 
transition region. The fact that the coherence is maintained (mainly) in the high- 
frequency DOFS seems to be consistent with the Nekhoroshev theorem, from which 
one can derive [6] that the action variables corresponding to these WFS are expected 
to have a slower divergence rate than the ones corresponding to the low-frequency 
DOFS. However, the last property has been derived for particular initial conditions, 
in which only one DOF with given characteristic frequency is initially excited. Since 
the energ. exchange among nonlinear oscillators may depend strongly on their initial 
excitation, the extension of the result derived in [6] to our generic initial conditions 
may only be supposed. 

-The-charac&tic coherence times r; introduced by us single out the behaviour 
of a particular WF in a complex situation like the one just depicted. We therefore 
believe that they can be particularly useful in studying dynamical states where the 
relevant DOFS behave in qualitatively different ways. 

an ay ihai ihe p i  and iimej f; meajure 'uie jei6itkqenBs of each 
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