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Abstract. We have developed a new diagnoslic tool for the analysis of the order-to-chaos
transition: the partial Lyapunov exponents, defined through the dynamics in the tangent
space. They allow the dynamics of single variables to be analysed, and are suitable for
systems with several degrees of freedom. We have numetically simulated the dynamics
of a model of five nonlinearly coupled oscillators; the partial Lyapunov exponents have
been used 10 compute a characteristic coherence time for each degree of freedom. These
quantities give information which is complementary to the usual statistical correlation
times, and show that the high-frequency degrees of freedom, while losing their correlation
during the order-to-chaos transition, may keep their coherence over long times.

1. Introduction

In systems with highly chaotic dynamics it is not expected to find qualitatively different
behaviours among the different degrees of frecdom: energy equipartition holds and
all dynamical variables rapidly lose memory of their initial conditions. However, if
the phase space also entails a region of highly ordered dynamics, there is usually a
transition region where the system shows a mixed behaviour. In the transition region
a partial chaoticity may induce differences in the dynamical evolution of the single
degrees of freedom (DOFs). A detailed understanding of this particular regime can
be important in real physical systems with a complex structure, in which the degree
of chaos of a part of the system could significantly differ from that of another part.

The usual indicators of order and chaos either give information on the dynamics
of the system as a whole (e.g. Lyapunov exponents [1], fractal dimensions [2], spectral
entropy (3]) or are impractical for systems with many DOFs (Poincaré’s maps, auto-
and cross-correlation functions). Because of the need for tools able to predict the
finite time behaviour of the single DOFs in a large system, we have elaborated a
new diagnostic instrument, easy to compute and able to give insight into the short
and medium time behaviour of each DOF in a complex structure. In this paper we
describe the new tools, and implement them on a simple dynamical model which,
however, retains an important feature of many complex systems: the presence of
different characteristic frequencies, with values spanning a large range.

2. The model

Our model consists of a system of five nonlinearly coupled linear oscillators. The
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Hamiltonian of the mode] is given by

22(:0.+w @)+ = ZZQ.Q,- (1)

Pj(#)

The value of o can be modified at will rescaling the lengths; we have taken o = 1.
We have considered three cases, distinguished by the values of the frequencies w;;
they are shown in table 1. The choice of the values has been suggested by the
purpose of having both resonant and non-resonant frequencies. In the no gap (NG)
case, studied for comparison, the frequencies span a narrow range. In the other two
cases, we studied the influence of a frequency gap on the dynamics of the various
DOFs by multiplying w, and w; by 10 for small gap (3G) and by 30 for large gap (LG).

Table 1. Different versions of the model.

Name Symbol W W wn wy wy
No gap NG 1 3 2 e 3

Small gap SG I 3 2 lde 30
Large gap LG 1 z 2 e 90

We have numerically integrated both the equations of motion and the variation
equations of motion with the central difference algorithm [4]. The initial conditions
for the time evolution were generic; i.c. the energy was equally distributed on the five
DoFs. The time step used in the integration was 1/50 of the shortest characteristic
period (27 /w,) in each case. The second-order eguations of motion are
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§; = —wiq; — 2a Z gl
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1(#£1) i(#8)
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The variation equations are usually written as first-order equations in the tangent
space; if 2; = F;({z;}) are the Hamiltonian equations of motion, where z; is one
of the g; or one of the p;» then the equations of motion of the tangent space vector
y corresponding to the variation of = have the following expression [1]:
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where the expressaon multiplying y, is computed along the trajectory =(¢). Here we
write them in an equivalent form, more suitable for the numerical integration with
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the central difference algorithm:
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where (&,,...,&5,m,-..,75) = y, with §; and 7; corresponding to the variations
of g; and p; respectively. The maximum Lyapunov exponent is given by

M = Jim MD) AU)—-— 'y“” )

where (0} is an initial vector taken randomly in the tangent space [1].
In order to have indicators referring to single DOFs we compute new quantities,
which we call partial Lyapunov exponents (PLES). Our definition is
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It is necessary that at least one of the A; is equal to Ay; but, @ priori, some of
them could be smaller. However, since a generic initial vector in the tangent space
will expand in modulus like e*M* when t — oo, with probabitity 1, one argues that
A;, for all i, should also be equal to Xy with probability 1. Nevertheless, it is
not W be expected that aili A;({) are equal at finite times, and their differences
are a relevant point of our investigation. We found that in the transition region
between highly ordered and highly chaotic motions, for times three or four orders of
magnitude higher than the characteristic periods of the oscillators, there are significant
differences in the values of the X;{1); we have used these differences to define a
characteristic coherence time r; for each DOF. Let 6,(t) = (A(2) — A;(1)) /)y then
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with T such that both A(%) and X;(¢) have reached their asymptotic value Ame
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3. Results

3.1, Maximum Lyapunov exponenis

We have studied our model at different values of ¢, the energy per DOF, or energy
density. We have first computed the maximum Lyapunov exponents Ay to find out
whether a transition in the dynamics takes place and the energy range in which this
happens. In figure i we show Ay, at different energy densities. From the change in
the slope of lg( Ay ) (sharper in the cases with gap) it is evident that such a transition
indeed takes place, and is located between ¢ = 0.9 and ¢ = 1.0. In fact, it has been
shown [5] that such a change takes place at an energy value which can be interpreted
as separating, in the phase space, dynamical regimes where diffusion is mainly chaotic
(high energy) from dynamical regimes where diffusion is mainly of the Arnold type
(low energy). This energy value has been called the strong stochasticity threshold
[5]. Below this threshold the behaviour of the different versions is different, but the
slopes are strongly positive; in particular, for the $G case, Ay, changes by four orders
of magnitude, passing from € = 0.7 to € = 1.0. Above the threshold the slopes
of the graphs become small and the three cases have similar Ay, At € = 0.7 we
have compared the Ay of the different versions, as reported in table 2. One can see
that the extension of the gap in the frequency spectrum is not correlated in a simple

manner with the global chaos of the system, as measured by the value of Ay,.

[ |

0.6 0.70.809 1 2

€

Figure 1. Maximum Lyapunov exponent against energy density for the NG, sG and LG
cases, For ¢ = 0.6, Ay is equal 1o zero in both the G and LG cases.

3.2, Correlation functions

We have collected in figures 2 and 3 the autocorrelation functions (ACFs) of the
harmonic energies of the different DOFs for the SG case, at total energy densities of
0.7, 0.8, 0.9, and 1.0. In figures 2 and 3 only maxima and minima over groups of 100
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Table 2. Ay for the different versions of the model;, ¢ = 0.7,

Version SG NG LG

Am 8.0x10~% 26x10—% 3.8x10-3
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Figure 2 Autocorrelation functions for the harmonic energy of the five degrees of
freedom, in the SG case, al two energy densities: (@) € = 0.7; (b) ¢ = 0.8. The integer
in each graph indicates the corresponding degree of freedom.

computed points were plotted, in order to have clear graphs over large times: in the
case of an ACF rapidly oscillating around zero this appears as a symmetrical graph.
The Acrs have different decaying patterns: a clear distinction between the high-
and low-frequency DOFs appears when the energy is increased. While the typical
correlation times of all DOFs should decrease when the energy is raised, the rate of
this decrease should be higher for the high-frequency DOFs than for the low-frequency

ones. In fact, in the low-energy regime dominated by the presence of KAM tori, the
hich-freguency DOFS are expected to exhibit longer correlation times than the low-

LGN ULdILy  LAUTS Gl \-l\rIVV\vu ) DALV p=i SNk ANALS

frequency DOFs [6]. For increasing energy a cross-over among DOFs should take place
when the system reaches the phase space region where the measure of the kKAM tori
tends to zero and the space is filled with chaotic orbits: here the correlation time
of each DOF is related to its characteristic period so that the high-frequency DOFs
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should have shorter correlation times than the low-frequency ones.

Figures 2 and 3 show very clearly the expected cross-over in the energy density
range 0.8-0.9. However, while the high-frequency ACFs (4 and 5) show, as expected,
a monotonic decrease in the decay time, the low-frequency ones (1, 2 and 3) exhibit
a peculiar rise in the decay time in the energy density window from € = 0.8 td
€ = (.9; however, for energies higher than 1.0, the decay times of these functions
also shorten. The ACFs have a complicated and diversified behaviour around the
transition, reflecting the complex structure of the phase space. The behaviour of the
ACFs for the LG case is similar to that shown here in the $G case, while in the NG
case the ACFs do not show a clear distinction among DOFs.

1.0

0.5

0.0

1.0 oot
1.0
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[ ]]
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Figure 3. Same as in figure 2, for two further energy densities: (g} e = 0.9; () ¢ = 1.0.

3.3. Partial Lyapunov exponents

We have computed the PLES for the five DOFs at various energies, encompassing the
transition region individuated by Ay. In figures 4 to 6 we show the graphs for the
quantities &,(¢), each one with five curves corresponding to the five DOFs, for three
energies. It is clear that in the NG case the various curves behave in a similar way,
although the fourth and fifth DOF show a higher degree of order at the beginning.
On the other hand, in the cases with a gap the curves behave in very different ways in
each graph; a group, corresponding to the DOFs with low characteristic frequencies,
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oscillate around zero; the other group, corresponding to the high frequencies, decay
to zero over large times. In figures 4 and 5 for the SG and LG cases there are peaks,
in the curves related to the high-frequency DOFs, which are strictly correlated. Each
peak appearing in a curve indicates that the corresponding DOF is just undergoing
an intermittent phase of more coherent dynamics, which gives lower values of the
corresponding A;(t). Figure 6 shows that the peaks tend to disappear when the
energy is raised.

Table 3. Coherence times of the degrees of freedom with higher frequency.

€ 0.7 08 0.9 1.0 20
NG

Ty 435 189 21 28 14
Ts 557 336 57 K] 16
SG

Ts 68 300 1630 182 &4 35
s 73 100 1740 192 69 37

LG
T4 2080 2020 116 100 51
s 2180 2iii izZi ijé 54

In table 3 we report the values of the coherence times r; of the high-frequency
DOFs at various energies. In each case T » 7; in (7). The values computed for
the low-frequency DOFs are less significant (and are therefore not given in table 3)
because the variance of the integrand in (7} is very large. Nevertheless, we report that
in the $G and LG cases they are much smaller than the 7; of the high-frequency DOFs;
they thus show a clear distinction between the dynamical behaviour of high-frequency
and low-frequency DOFS. On the other hand, in the NG case, where we expect a more
uniform behaviour from the various DOFs, we found that all the r; have the same
order of magnitude.

The values of the 7, given in table 3 show that while the general trend is of
decreasing 7, for increasing energy, the detailed behaviour of the DOFs manifests a
more complicated pattern. Thus, for example, the 7; for the SG case are sometimes
larger and sometimes smaller than the corresponding 7, of the LG case at the same
energy. The 7; in these two cases turn out to be roughly inversely proportional to
A Namely, 7, and 7, are given by 7; = ¢; /Ay, where ¢; seems to be independent
of the energy and to depend only—but in a non-trivial way—on the :th frequency.

4. Discussion and comments

As already mentioned, in the SG and LG cases the ACFs show a characteristic be-
haviour: at Jow energy the functions corresponding to the high-frequency DOFs extend
over times which are much larger than those of the [unctions corresponding to the
low-frequency DOFs; when the energy is raised, a cross-over in the correlation times
occurs. It is interesting to notice that a cross-over of characteristic relaxation times
similar to that described here has been observed in the Fermi-Pasta-Ulam 3 model
[7). However, it must also be noticed that it is often difficult to obtain a quantitative
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Figure 4. Functions &;(¢t) for the NG, SG and LG cases, for € = 0.7. The integers on
the curves refer to the single degrees of freedom. Note that in this and in the next two
figures some scales are different.
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Figure 5. Same as in figure 4, for ¢ = 0.8.

estimate of characteristic correlation times from the ACFs. It is evident, looking at
figures 2 and 3, that the shape of the ACFs in most cases does not allow a character-
istic decay time to be identified. Indeed, either the ACFs are correlated over times
which are even greater than the whole simulation time (all DOFs at € = 0.7), or the
structure is quite irregular (see, e.g., the fifth DOF at € = 0.9).

A comparison among the ACFs in the cases with gap gives a picture which is
somehow in contradiction with the picture derived from the PLES. Thus, while the PLES
show that the high-frequency DOFs on nearby trajectories diverge more slowly than the
low-frequency DOFs, the corresponding ACFs at energies equal to and higher than 0.9
give a different indication, i.e. that the correlation is shorter for the high frequencies.
Therefore, for energies above the cross-over region, the high-frequency DOFs have
shorter correlation times but longer coherence times than the low-frequency DOFs.
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Figure 6. Same as in figure 4, for e = 1.0.

This complex situation may be understood in the following way. It is well known
that the measure of the KAM tori on the hypersurface of constant energy decreases
when the energy is raised. In the region where the stochastic sea coexists with
residual KAM tori, the latter act as constraints for the trajectories of the system:
they cannot bound undefinitely the trajectories (if the number of DOFs is greater
than two}, but they can force the system for a certain time into ‘channels’ running
through them. In this sitwation, for generic initial conditions, the system will move
in the stochastic sea; this will give short correlation times as shown by the ACFs
at higher energies. However, due to the constraints exerted by the residual Kam
tori, a trajectory starting from a slightly displaced initial condition—although equally
stochastic—could be confined for a certain time near the first one. This behaviour
is reflected in the existence of long coherence times for certain DOFs. Therefore, we
¢an say that the PLES and the coherence times T; Mméasure the sensitiveness of each
DOF to the presence of ordered portions (residual KAM tori or fragments of KAM
tori) in the phase space; they thus give relevant information necessary to distinguish
the short and medium time behaviour of the different DOFs of the system in the
transition region. The fact that the coherence is maintained (mainly) in the high-
frequency DOFs seems to be consistent with the Nekhoroshev theorem, from which
one can derive [6] that the action variables corresponding to these DOFs are expected
t0 have a slower divergence rate than the ones corresponding to the low-frequency
DOFs. However, the last property has been derived for particular initial conditions,
in which only one DOF with given characteristic frequency is initially excited. Since
the energy exchange among nonlinear oscillators may depend strongly on their initial
excitation, the extension of the result derived in [6] to our generic initial conditions
may only be supposed.

The characteristic coherence times r, introduced by us single out the behaviour
of a particular DOF in a complex situation like the one just depicted. We therefore
believe that they can be particularly useful in studying dynamical states where the
relevant DOFs behave in qualitatively different ways.
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